Frances Chow, M.D. joins the USC Brain Tumor Center

The USC Brain Tumor Center (BTC) is pleased to announce the successful recruitment of Frances Chow, M.D. to the Keck School of Medicine.

Dr. Frances Chow specializes in neuro-oncology and joins the USC community to provide expertise in the treatment of brain tumors. She will collaborate with experts at USC’s Brain Tumor Center to provide exceptional patient-centered care, offer clinical trials featuring innovative therapies, and discover novel treatments through translational research.

Dr. Chow received her undergraduate degree in Molecular & Cell Biology from the University of California, Berkeley and her medical degree from Drexel University College of Medicine. She completed her Internal Medicine internship at the University of California, Irvine and her Neurology residency at USC, where she was appointed as Chief Resident based on her exemplary record of leadership and clinical skills. She was recognized for her compassionate patient care with the Department of Neurology Victoroff M.D. Award, and she was honored for her commitment to education with the Keck School of Medicine Outstanding Teaching Award. She completed her fellowship in Neuro-Oncology at the University of California, Los Angeles, where she conducted research on the glioblastoma tumor microenvironment and systemic responses to immunotherapy.

Dr. Chow has been named by Southern California Super Doctors® Rising Stars 2020 as one of the top doctors in Southern California for 2020. These doctors have made noteworthy achievements early in their careers and are rising through the ranks of their field. As part of the selection process, other physicians are asked to consider the following question: “If you needed medical care, which doctor would you choose?” No more than 2.5% of doctors are selected for this distinction.

We are thrilled to share with you the relaunch of the USC Brain Tumor Center (BTC). Although our specialist team has been providing exemplary care for thousands of patients with brain tumors over the past several decades, the USC BTC team has been recently enhanced with the addition of several new multi-disciplinary team members from a variety of specialties dedicated to the most effective and efficient care for our patients, including Dr. Frances Chow, our newest member of the Neuro-Oncology team. With an emphasis on streamlined, multidisciplinary clinical care, access to the latest clinical trials, and cutting edge translational research, the USC BTC is paving the way towards longer-term control and cures for a variety of brain tumors.

We offer patients from Southern California, all over the U.S., and internationally, next day in person and telemedicine visits and a concierge style, navigated patient experience, and treat the highest number of brain tumor patients of any academic center in Southern California. Our vast clinical and research network spans from the Keck Medical Center of USC to the Norris Comprehensive Cancer Center, CHLA, LA County Hospital, the University Park Campus, and Caltech, among others. Our research team is supported by millions of dollars of NIH funding and unique investigational treatment modalities for a variety of malignant and benign brain tumors, including inhaled drug delivery and immunotherapy platforms. We are very proud of the care we deliver, and the USC BTC promises to only hone its treatment and research portfolio over the next decade. Stay tuned, and thank you for your support!

Gabriel Zada, MD, MS
Professor of Neurological Surgery
Director, USC Brain Tumor Center

From the Director
Phase I trial of Intranasal NEO100 completed for recurrent Glioblastoma Multiforme

NEO100-01 is a Phase 1/2A study of the monoterpene, perillyl alcohol (NEO100) in patients with recurrent glioblastoma.

The Genomic Landscape of Pediatric Cancers: Implications for Diagnosis and Treatment

E. Alejandro Sweet-Cordero¹, Jaclyn A. Biegel²

¹Department of Pediatrics, Division of Hematology and Oncology, University of California, San Francisco, California, United States and ²Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, and Keck School of Medicine, University of Southern California, Los Angeles, California, United States

Efficient Brain Targeting and Therapeutic Intracranial Activity of Bortezomib Through Intranasal Co-delivery with NEO100 in Rodent Glioblastoma Models

Weijun Wang¹, Steve Swenson¹, Hee-Yeon Cho¹, Florence M. Hofman², Axel H. Schönthal³, Thomas C. Chen³

Departments of ¹Neurosurgery, ²Pathology, and ³Molecular Microbiology & Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States

J Neurosurg March 15, 2019, published online.

As the endothelial-to-mesenchymal transition (EndMT) supports the pro-angiogenic and invasive characteristics of glioblastoma, blocking this process would be a promising approach to inhibit tumor progression and recurrence. Here, we demonstrate that glioma stem cells (GSC) induce EndMT in brain endothelial cells (BEC). TGF-β signaling is necessary, but not sufficient to induce this EndMT process. NEO212, a conjugate of temozolomide and perillyl alcohol, blocks EndMT induction and reverts the mesenchymal phenotype of tumor-associated BEC (TuBEC) by blocking TGF-β and Notch pathways. Consequently, NEO212 reduces the invasiveness and pro-angiogenic properties associated with TuBEC, without affecting control BEC. Intracranial co-implantation of BEC and GSC in athymic mice showed that EndMT occurs in vivo, and can be blocked by NEO212, supporting the potential clinical value of NEO212 for the treatment of GBM.

SELECTED PUBLICATIONS
CLINICAL TRIALS: Now Enrolling at the USC Brain Tumor Center

For more information about these clinical trials, please contact Aida Lozada, Clinical Trials Manager, at Aida.Lozada@med.usc.edu.

An Open-Label, Phase 1/2A Dose Escalation Study of Safety and Efficacy of NEO100 in Recurrent Grade IV Glioma

NEO100-01 is a Phase 1/2A open-label study of perillyl alcohol (NEO100) in patients with recurrent glioma. NEO100 is delivered four times a day by intranasal administration using a nebulizer and nasal mask for up to 6 months. There is no concurrent control. This is the first nasal administration in the US, after prior oral studies with perillyl alcohol proved ineffective.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent Grade IV Glioma (Glioblastoma)</td>
<td>Inhaler drug: Perillyl Alcohol</td>
<td>Phase: 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Phase: 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ClinicalTrials.gov Identifier: NCT02704858</td>
</tr>
</tbody>
</table>

Study to Evaluate Eflornithine + Lomustine vs Lomustine in Recurrent Anaplastic Astrocytoma (AA) Patients (STELLAR)

The purpose of this study is to compare the efficacy and safety of eflornithine in combination with Lomustine, compared to Lomustine taken alone, in treating patients whose Anaplastic Astrocytoma has recurred/progressed after radiation and temozolomide chemotherapy.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
</table>
| Recurrent Anaplastic Astrocytoma | Oral Drug: Eflornithine
Oral Drug: Lomustine | Phase: 3 |
| | | ClinicalTrials.gov Identifier: NCT02796261 |

Single Fraction Stereotactic Radiosurgery Compared with Fractionated Stereotactic Radiosurgery in Treating Patients with Resected Metastatic Brain Disease (CTSU- A071801)

This phase III trial studies how well single fraction stereotactic radiosurgery works compared with fractionated stereotactic radiosurgery in treating patients with cancer that has spread to the brain from other parts of the body and has been removed by surgery. Single fraction stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Fractionated stereotactic radiosurgery delivers multiple, smaller doses of radiation therapy over time.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metastatic Malignant Neoplasm In the Brain</td>
<td>Single Fraction Stereotactic Radiosurgery vs Fractionated Stereotactic Radiosurgery</td>
<td>Phase: 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ClinicalTrials.gov Identifier: NCT04114981</td>
</tr>
</tbody>
</table>

Observation or Radiation Therapy in Treating Patients with Newly Diagnosed Grade II Meningioma That Has Been Completely Removed by Surgery (NRG-BN003)

This randomized trial studies how well radiation therapy works compared with observation in treatment patients with newly diagnosed grade II meningioma that has been completely removed by surgery. Radiation therapy uses high energy x-rays to kill the tumor cells and shrink tumors.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
</table>
| Grade II Meningioma intracranial Meningioma | Other: Clinical Observation
Radiation: Radiation Therapy | Phase: 3 |
| | | ClinicalTrials.gov Identifier: NCT03180268 |

Olaparib in Treating Patients with Advanced Glioma, Cholangiocarcinoma, or Solid Tumors with IDH1 or IDH2 Mutations

This phase II trial studies how well Olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that have spread to other places in the body (metastatic) and usually cannot be cured or controlled with treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
</table>
| Advanced Malignant Solid Neoplasm Glioblastoma
Recurrent Cholangiocarcinoma
Recurrent Malignant Solid Neoplasm WHO Grade II / III Glioma | Drug: Olaparib | Phase: 2 |
| | | ClinicalTrials.gov Identifier: NCT03212774 |
A Study of Selinexor in Combination with Standard of Care Therapy for Newly Diagnosed or Recurrent Glioblastoma

This is a global, Phase 1/2, multicenter, open-label study, randomized study to evaluate a combination regimen with or without Selinexor. The study will independently evaluate 3 different combination regimens in 3 treatment arms in participants with New GBM, MGMT promoter unmethylated disease in Arm A, MGMT methylated in Arm B, and participants with Recurrent GBM regardless of MGMT status in Arm C.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly Diagnosed and Recurrent Glioblastoma Multiforme</td>
<td>Drug: Selinexor
Drug: Temozolomide (TMZ)
Drug: Lomustine (CCNU)
Radiation: Standard Fractionated Radiation therapy (RT)</td>
<td>Phase: 1
Phase: 2
ClinicalTrials.gov identifier: NCT04421378</td>
</tr>
</tbody>
</table>

Pivotal, Randomized, Open-label Study of Optune® Concomitant with RT & TMZ for the Treatment of Newly Diagnosed GBM (EF-32)

To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy. Optune® is a medical device that has been approved for the treatment of recurrent and newly diagnosed glioblastoma (GBM) by the Food and Drug Administration (FDA) in the United States, and Optune® has obtained a CE mark in Europe for recurrent and newly diagnosed GBM.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly Diagnosed Glioblastoma Multiforme</td>
<td>Device: Optune®</td>
<td>Phase: N/A
ClinicalTrials.gov identifier: NCT04471844</td>
</tr>
</tbody>
</table>

Trial of Enzastaurin Plus Temozolomide During and Following Radiation Therapy in Patients with Newly Diagnosed Glioblastoma with or Without the Novel Genomic Biomarker, DGM1

This study will be conducted as a randomized, double-blind, placebo-controlled, multi-center. The randomized part of the study will be preceded by a safety run-in to evaluate the safety and tolerability of Enzastaurin in combination with radiation therapy and temozolomide. The primary analysis will be conducted in all randomized patients who are DGM1 biomarker positive regardless of MGMT methylation status.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newly Diagnosed Glioblastoma Multiforme</td>
<td>Oral Drug: Enzastaurin (Kinenza®) Hydrochloride
Other: Placebo
Chemotherapy: Temozolomide
Radiation: Radiation Therapy</td>
<td>Phase: 3
ClinicalTrials.gov identifier: NCT03776071</td>
</tr>
</tbody>
</table>

Stereotactic Radiosurgery (SRS) Compared with Collagen Tile Brachytherapy

This trial will be a randomized controlled study comparing the efficacy and safety of intraoperative radiation therapy using GammaTiles TM (GT) versus SRS 3-4 weeks following metastatic tumor resection which is the current standard of care. GammaTile is a biocompatible permanently implanted system. Each GammaTile unit is composed of a collagen “tile” that contains 4 Cesium-131 (Cs-131) titanium-encased sources. The primary outcome measure will include the intent to treat population.

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain Metastasis</td>
<td>Device: Gamma Tile-Surgically Targeted Radiation Therapy (StaRT)
Radiation: Stereotactic Radiation Therapy</td>
<td>Phase: 3
ClinicalTrials.gov identifier: NCT04365374</td>
</tr>
</tbody>
</table>

Standard Chemotherapy vs Chemotherapy Guided by Cancer Stem Cell Test in Recurrent Glioblastoma (CSCRGBM)

The purpose of this clinical study is to confirm the utility of chemosensitivity tumor testing on cancer stem cells (ChemoID) as a predictor of clinical response in poor prognosis malignant brain tumors such as recurrent glioblastoma (GBM).

<table>
<thead>
<tr>
<th>Condition or disease</th>
<th>Intervention/treatment</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent Glioblastoma</td>
<td>Diagnostic Test: ChemoID assay
Drug: Chemotherapy</td>
<td>Phase: 3
ClinicalTrials.gov identifier: NCT03632135</td>
</tr>
</tbody>
</table>
We Are the USC Brain Tumor Center

We Are the USC Brain Tumor Center

NEUROSURGERY
Gabriel Zada, MD, MS
Thomas Chen, MD, PhD
Frank Attenello, MD, MS
Steven Giannotta, MD
Cheng Yu, PhD

NEUROLOGY
Frances Chow, MD
Helena Chui, MD
James Hu, MD

RADIATION ONCOLOGY
Shelly Bian, MD
Eric Chang, MD
Adam Garsa, MD
Richard Jennelle, MD
Jason Ye, MD

NEURO-RADIOLOGY
Jay Acharya, MD
John Go, MD
Paul Kim, MD
C. Jason Liu, MD, PhD
Mark Shiroishi, MD

ADVANCED IMAGING (USC Laboratory of Neuro Imaging)
Arthur Toga, PhD
Paul Thompson, PhD
Danny Wang, PhD

VITERBI SCHOOL OF ENGINEERING
Mark E. Davis, PhD
Ellis Meng, PhD
Krishna Nayak, PhD
Paul K. Newton, PhD

NEURO-PATHOLOGY
Kyle Hurth, MD, PhD
Anna Mathew, MD
Michael Selsted, MD, PhD

NORRIS CANCER CENTER
Dennis Deapen, DPH
Carolyn Lerman, PhD
Melissa Woodhouse

BIOINFORMATICS AND TRANSLATIONAL GENOMICS
John Carpten, PhD
David Craig, PhD
Lee Gibbs, PhD
Troy McEachron, PhD
Bodour Salhia, PhD
Daniel Weisenberger, PhD

MOLECULAR BIOLOGY AND BASIC SCIENCE
Peggy Farnham, PhD
Florence Hofman, PhD
Josh Neman, PhD
Suhn Rhie, PhD
Axel Schoenthal, PhD
Jean Chen Shi, PhD
Anna Wu, PhD
Bersilav Zlokovic, PhD

BIOSTATISTICS AND NEURO-EPIDEMIOLOGY
Steven Yong Cen, PhD
Roberta McKean-Cowdin, PhD
Kimberly Siegmund, PhD
Joseph Wiemels, PhD

NEURO-OPHTHALMOLOGY
Vivek Patel, MD
Kimberly Gokoffski, MD, PhD

CHLA
Shahab Asgharzadeh, MD
Jadyn Beigie, PhD
Peter Chairelli, MD, PhD
Jason Chu, MD, MSc
Tom Davidson, MD
Susan Durham, MD, MS
Anat Epstein-Erdnich, MD, PhD
Debra Hawes, MD
Mark Krieger, MD
Ashley Margol, MD, MS
Rex Moats, PhD
Nathan Robison, MD

CALTECH
Shuki Bruck, PhD
Wei Gao, PhD
Viviana Gradinaru, PhD
James Heath, PhD
Yu-Chong Tai, PhD

CLINICAL TRIALS
Anush Arakelyan
Trey Garrett
Sandy Leong
Aida Lozada

NURSING
Brenda Avalos
Rebekah Ghazaryan
Erika Gonzales
Emily Rorden
Tania Vartanians

SOCIAL WORK
Jinsy Rogers

DEVELOPMENT
Brian Loew
Sonali Perera

ADMINISTRATIVE
Nikos Carli
Richard Hage, PhD
Paola Mork, MHA
Jerry Moses
Jacqueline Sandoval, MD

We Are the USC Brain Tumor Center

Learn more at: BTC.beckmedicine.org

Stay in Touch
To refer a patient, please call (844) 33-BRAIN (844-332-7246)

Make a Gift. Because of your support, we can provide Exceptional Medicine. Please contact Brian Loew, Senior Director of Development, Neurosciences, at Brian.Loew@med.usc.edu or visit www.beckmedicine.org/btc-donations

For more information about brain tumor clinical trials, please contact Aida Lozada, Clinical Trials Manager, at Aida.Lozada@med.usc.edu

Please email us with your questions at BTC@med.usc.edu

Learn more at: BTC.beckmedicine.org